25PY101: Engineering Physics Module 1 – Unit 1

Course instructor: Dr. Sreekar Guddeti

October 25, 2025

Assignment 2: Carrier drift

1 Drift under low field regime

Reference: Problem 5.9 [Neamen] Under low field, the drift velocity v_d of charge carrier is proportional to the applied electric field E

$$v_d = \mu E$$

where μ is the mobility of the carrier. This proportionality is valid only if the drift velocity is small compared to the thermal velocity v_{th} . This occurs in the **low field regime** where the applied field does not appreciably alter the thermal energy of the electron. Therefore, the low field regime is defined by ¹

$$\frac{v_d}{v_{th}} \ll 1.$$

Problem: A GaAs semiconductor resistor is doped with donor impurities at a concentration of $N_d = 2 \times 10^{15} \,\mathrm{cm}^{-3}$ and has a cross-sectional area of $5 \times 10^{-5} \,\mathrm{cm}^2$. A current of $I = 25 \,\mathrm{mA}$ is induced in the resistor with an applied bias of $5 \,\mathrm{V}$.

- (a) Determine the length of the resistor.
- (b) Using the results of part (a). calculate the drift velocity of electrons.
- (c) What is the electric field induced in the semiconductor?
- (d) What is the thermal velocity of electron at 300 K?
- (e) What is the ratio of drift velocity to the thermal velocity?
- (f) Is the drift motion in the low field regime?

 $^{^{1}\}mathrm{A}$ common heuristic in semiconductor physics is to consider a ratio less than 0.1 as $\ll 1$.

2 Drift under high field regime

Reference: Section 5.1.4 – Velocity Saturation

[Neamen]

When the electric field is high enough for the drift velocity to become comparable to the thermal velocity, the drift velocity saturates. This is the **high field regime**.

Problem: Use the velocity-field relations for Si and GaAs as shown in Figure. 2 to determine the transit time of electrons through a 1 µm distance in these materials for an electric field of [Hint: This is a log-log plot.]

- (a) $1 \, \text{kV cm}^{-1}$
- (b) $50 \,\mathrm{kV} \,\mathrm{cm}^{-1}$

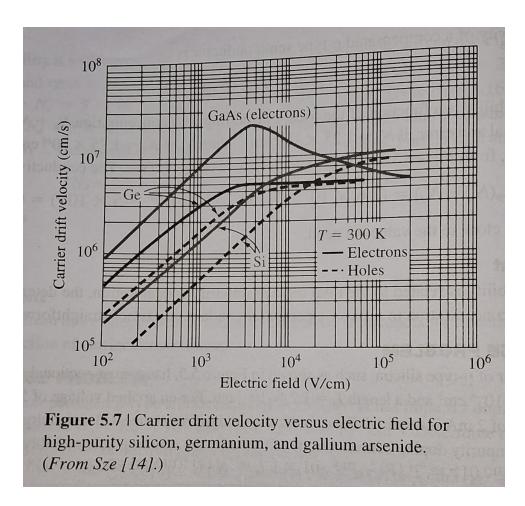


Figure 1: Taken from Neamen.

End of Assignment