Engineering Physics (2025) Course code 25PY101 Unit 1: Metals and Semiconductors

Course Instructor: Dr. Sreekar Guddeti Assistant Professor in Physics

Department of Science and Humanities Vignan's Foundation for Science, Technology and Research

September 23, 2025

Course Structure and Outline

- Number of credits

 Number of hours per week
- Number of hours per week
 Decomposition of hours
 L(3), T(0), P(2), SL(3)
- Number of Modules 2
- Number of weeks per Module
 U-1 (6), U-2 (9)

Module	Unit	Topic
Module 1	Unit 1	Metals, Semiconductors
	Unit 2	Quantum Mechanics
Module 2	Unit 3	Quantum free electron theory
	Unit 4	p-n junction diode
	Unit 5	Laser

Table: Course Outline

Course Lectures: Module 1

Module	1	
Unit 1	Introduction to metals, expression for electrical conductivity	
	Introduction to semiconductors-intrinsic, n-type and p-type	
	Elec. conductivity of s.c. – intrinsic, n-type and p-type	
	Hall effect- applications.	
Unit 2	Introduction to Quantum Mechanics, Dual nature of radiation	
	de Broglie's concept of matter waves, Uncertainty principle	
	Schrödinger's time-independent wave equation	
	Particle confined in a one-dimensional infinite potential well	
	Quantum dots	
	Finite potential well- Quantum Tunnelling	
	Scanning tunnelling microscope, tunnelling diode (Qualitative)	

Course Lectures: Module 2

Module 2		
Unit 3	Quantum free electron theory, Fermi-Dirac distribution	
	Electronic specific heat of solids, Density of states (qualitative)	
	Success and Failures of quantum free electron theory of solids	
	E-k diagram- classification of materials based on bands in solids	
	Fermi level in semiconductors- intrinsic and extrinsic.	
Unit 4	p-n junction diode- forward and reverse bias conditions	
	Solar cell-construction, working-characteristics, applications	
	Direct and indirect bandgap semiconductors	
	LED-construction, working characteristics, applications.	
	Photodiode, construction, working characteristics, applications	
	Tunnelling diode	
Unit 5	Introduction to lasers	
	Normal light vs. laser light – characteristics of laser light	
	Stimulated absorption, Spontaneous and Stimulated emission	
	population inversion, pumping	
	Optical resonator-lasing mechanism	
	Diode laser – construction, working and applications	
	Optical fibre communications	

Course Self-Learning

Atleast three hours per week of self-learning.

Textbooks

- M. N. Avadhanulu, "Engineering Physics", S. Chand publications 2010.
- ② Donald A. Neamen, "Semiconductor Physics and Devices: Basic principle", 4th edition, McGraw-Hill, New York, 2012.

References

- D. Halliday, R. Resnick and J. Walker, "Fundamentals of Physics", 6th edition, John Wiley and Sons, New York, 2001.
- M. N. Avadhanulu, "Engineering Physics", S. Chand publications 2010.
- Charles Kittel, "Introduction to solid state physics", 7th edition, Wiley, Delhi, 2007.
- David J. Griffiths, "Introduction to Electrodynamics", 3rd edition, Prentice Hall of India, New Delhi, 2012.
- Saharoft and Mermin, "Solid State Physics", International student edition, 2008.

Course Practices

- Study the characteristics of diode.
- Oetermination of efficiency and Fill factor of a solar cell.
- Oetermine the efficiency and fill factor of solar cells in Parallel and series combinations.
- Study the V-I characteristics of LED.
- Optical fibre Determination of Numerical aperture Acceptance angle.
- Obetermination of attenuation in Optical fiber.
- Laser Determination of wavelength.
- Determination of the slit width from Fraunhofer diffraction pattern using LASER beam.
- Obemonstration of monochromatic nature of laser light comparing with ordinary light by the principle of dispersion by using Prism.

Course Outcomes

- Comprehend the nature of metals and semiconductors under different conditions.
- Apply the principles of quantum mechanics to unravel the latest technical developments.
- Categorize the solids based on band theory
- Appraise the significance of P-N junction diodes in opto-electronic devices

Sustainable development goals

Assessment Pattern

- Formative Assessment (60%): Continuous evaluation through tests, assignments, labs.
- Summative Assessment (40%): End-semester exam.
- Passing criteria: \geq 35% in both formative and summative.
- Relative grading system (final GPA based on distribution).
- Minimum 75% attendance required.