Engineering Physics (2025) Course code 25PY101 Unit 2: Quantum mechanics

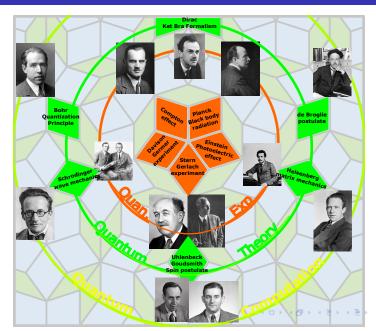
Course Instructor:

Dr. Sreekar Guddeti

Assistant Professor in Physics
Department of Science and Humanities
Foundation for Science Technology and

Vignan's Foundation for Science, Technology and Research

October 23, 2025


Unit 2 Plan

- Introduction to QM
- 2 Dual nature of radiation
- de Broglie's concept of matter waves
- 4 Heisenberg's uncertainty principle
- 5 Schrödinger's time dependent wave equation
- 6 Particle in a 1D box
- Quantum dots
- 8 Finite Potential well Quantum tunnelling

Unit 2 Plan

- Introduction to QM
- Dual nature of radiation
- de Broglie's concept of matter waves
- 4 Heisenberg's uncertainty principle
- 5 Schrödinger's time dependent wave equation
- 6 Particle in a 1D box
- Quantum dots
- 8 Finite Potential well Quantum tunnelling

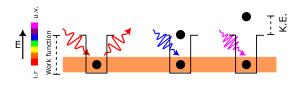
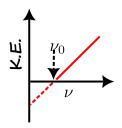

Quantum mechanics jigsaw puzzle

Photo-electric effect

Definition

Light of **suitable** frequency leads to **instantaneous** emission of electron from a metal surface.



A. Einstein

- Discovered by Albert Einstein in 1905.
- The emitted electron is called the **photo-electron**.
- The minimum energy required to emit an electron is a material property and is called the **work function** of the metal.

Classical explanation of photo-electric effect

- Light is a wave with energy given by its intensity.
- Therefore, even low-frequency light (if sufficiently intense) should eventually provide enough energy to eject electrons — though perhaps after some time delay.
- But it is observed that
 - Emission of electrons is instantaneous even for low intensity light as long as frequency of light is above a certain threshold ν_0 .
 - No electrons are emitted if the frequency is below the threshold, no matter how intense the light is.
 - The kinetic energy of emitted electrons depends on the frequency of light, not its intensity.

Key Insight

Classical electromagnetic theory cannot explain photoelectric effect!

Quantum mechanical explanation of Photoelectric effect

• Albert Einstein borrowed the idea of quantum¹ from Max Planck's theory of blackbody radiation and applied to photoelectric effect.

Planck's law

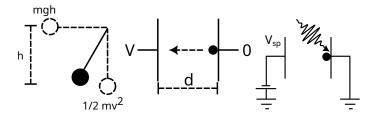
- Max Planck postulated that the light energy is absorbed or emitted by matter in is a packet of energy. The quantum of energy is related to the frequency ν by $E = h\nu$ where h is the **Planck's constant** given by $6.625 \times 10^{-34} \, \mathrm{J} \, \mathrm{s}.$
- The quantum of light energy is called **photon**.

Max

Planck

Estimate: Energy of infra-red photon

Wavelength of infra-red photon is 1 µm.


[Hint: $c = \nu \lambda$]

¹ "Quantum" is Latin for "a certain amount". In the context of physics, the word quantum refers to a packet. イロト イ御 トイミト イミト 一度

Photoelectric effect: experiment

Theorem

An electron under potential difference of V gains kinetic energy of eV.

Proof.

- Electric field is $E = \frac{V}{d}$.
- Acceleration is $|a| = \frac{eE}{m}$.
- Initial velocity u = 0. Final velocity is $v^2 = 2ad$.
- Kinetic energy K.E. = $\frac{1}{2}mv^2 = eV$.

Photoelectric effect: energy equation

• Photon with energy $E = h\nu$ transfers energy to the electron, to overcome the work function Φ . The rest of the energy is photoelectron's kinetic energy.

$$K.E. = h\nu - \Phi$$

- The photoelectrons generate photocurrent.
- In the experiment, the photo electron emitted is decelerated by applying a **stopping potential** V_{sp} till the photocurrent is zero. Thus,

$$K.E. = eV_{sp}$$

• Therefore, frequency is related to stopping potential as

$$eV_{sp} = h\nu - \Phi$$

- The plot of $\nu(\to x)$ vs $V_{sp}(\to y)$ is a straight line y=mx+c with slope m=h/e and y-intercept $c=-\Phi$.
- The x-intercept is the minimum frequency of photon to generate photo-current and is called the **threshold frequency** $\nu_0 = \frac{\Phi}{\hbar}$.

Photoelectric effect: momentum equation

 From Einstein's special theory of relativity, the momentum of a particle of mass m is related to its total energy E by

$$E^2 = p^2c^2 + m^2c^4$$

where c is the velocity of light.

ullet If the light is considered as a massless particle i.e. $m_{
m photon}=0$, then

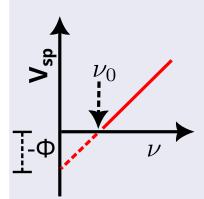
$$E = p_{\mathrm{photon}}c \Rightarrow p_{\mathrm{photon}} = \frac{E}{c}$$

 However, the velocity of light is related to its wavelength and frequency by

$$c = \nu \lambda$$

 Using the Planck's law for the energy of photon, the momentum is given by

$$p_{\mathrm{photon}} = rac{h}{\lambda}$$


Photoelectric effect: problems

Estimate: Energy of X-ray photon

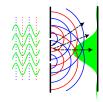
Wavelength of X-ray photon is 0.708 $\mbox{\normalfont\AA}$.

[Hint: (a). $E \propto 1/\lambda$. (b). $E_{\lambda=1\,\mu\mathrm{m}}=1.24\,\mathrm{e\,V}]$

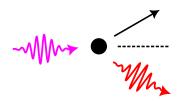
Problem

The work function Φ of Au is $4.90\,e\,V$.

- A blue photon is incident on Au. Does it emit photo-electron? If yes, what is the stopping potential required to have zero photocurrent. [λ_{blue} = 460 nm]
- 2 Determine the threshold frequency ν_0 for photon emission of electrons for

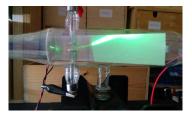

Repeat the above steps for Cs with work function $1.90 \, \mathrm{e\, V.}$

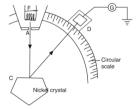
 A_{II} .

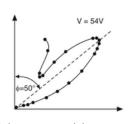

Unit 2 Plan

- Introduction to QM
- 2 Dual nature of radiation
- de Broglie's concept of matter waves
- 4 Heisenberg's uncertainty principle
- 5 Schrödinger's time dependent wave equation
- 6 Particle in a 1D box
- Quantum dots
- 8 Finite Potential well Quantum tunnelling

Radiation: Wave vs Particle



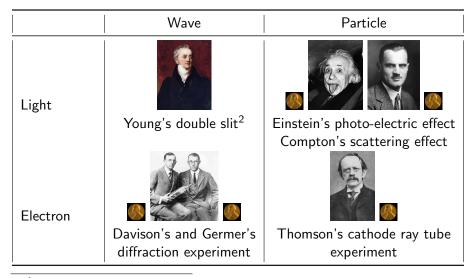

- Young's double slit experiment
- Discovered in 1801
- Light is a wave with amplitude, frequency and wavelength
- Principle of superposition: Waves superpose leading to constructive and destructive fringes.
- Animation for double slit experiment [Click]



- Compton effect
- Discovered in 1923.
- Light is a particle with momentum!
- Conservation of momentum: Light redshifts (wavelength increases) upon
 - scattering off an electron

Matter: Particle vs Wave

(a)cathode ray tube, Davison-Germer experiment (b) and data (c).


- Thomson's cathode ray tube experiment
- Discovered in 1897
- Electron is a particle

- Davisson and Germer experiment
- Discovered in 1927.
- Electron is a wave!

Key Insight

The name of the game is light-matter interaction. And nature plays the game in a **symmetric** fashion!

Summary of nature of light-matter interaction

²British polymath who has been described as "The Last Man Who Knew Everything" and disproved Newton's corpuscular theory of light.