Engineering Physics (2025) Course code 25PY101 Unit 2: Quantum mechanics

Course Instructor:

Dr. Sreekar Guddeti

Assistant Professor in Physics
Department of Science and Humanities
Foundation for Science Technology and

Vignan's Foundation for Science, Technology and Research

October 25, 2025

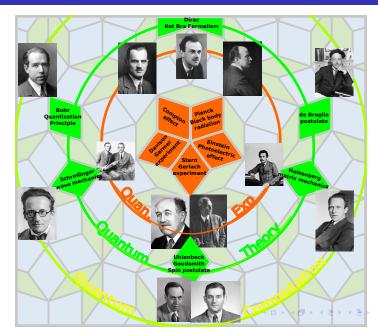
Unit 2 Plan

- Introduction to QM
- 2 Dual nature of radiation
- de Broglie's concept of matter waves
- 4 Heisenberg's uncertainty principle
- 5 Schrödinger's time dependent wave equation

Unit 2 Plan

- Introduction to QM
- 2 Dual nature of radiation
- 3 de Broglie's concept of matter waves
- 4 Heisenberg's uncertainty principle
- 5 Schrödinger's time dependent wave equation

Quantum mechanics jigsaw puzzle



Theories of quantum physics

- Max Planck's postulate of quantization of light energy absorbed or emitted by electron in quanta (plural for quantum)
- Louis de Broglie's postulate of existence of matter waves
- Werner Heisenberg's principle of uncertainty
- Erwin Schrödinger's wave equation

Wave-Particle Duality

de Brogie hypothesis

Any moving particle is associated with a wave. The waves associated with particles are called **de Broglie waves** or **matter waves**.



- Louis de Broglie in 1924 postulated the existence of matter waves.
- He suggested since light wave exhibits particle like behaviour, matter particles should be expected to show wave-like properties. This is the hypothesis of wave-particle duality.
- The wavelength λ of the matter wave is related to the momentum p of the matter particle by

$$\lambda = \frac{h}{p}$$

Matter wave: properties

- Matter waves are due to motion of particle and are independent of charge. Therefore, they are neither electromagnetic waves nor acoustic waves. They are a new kind of waves.
- Can propagate/travel through vacuum and do not require any medium for propagation.
- Smaller the mass, longer the de Broglie wavelength.
- Smaller the velocity, longer the de Broglie wavelength.
- Velocity of matter waves depends on velocity of particle and is not a constant quantity.

Estimate: de Broglie wavelength of thermal electron

Estimate at room temperature.

Estimate: de Broglie λ of macroscopic particle

Cricket ball of mass $150 \,\mathrm{g}$ is bowled at $140 \,\mathrm{km}\,\mathrm{h}^{-1}$.

Unit 2 Plan

- Introduction to QN
- 2 Dual nature of radiation
- de Broglie's concept of matter waves
- 4 Heisenberg's uncertainty principle
- 5 Schrödinger's time dependent wave equation

Heisenberg uncertainty principle

Uncertainty principle/hypothesis

Precise values of position and momentum of a particle cannot be determined **simultaneously**. If the uncertainty in position is Δx and uncertainty in momentum is Δp , then

$$\Delta x \, \Delta p \ge \frac{\hbar}{2}, \qquad \text{where} \quad \hbar = \frac{h}{2\pi}$$

where \hbar is the reduced/modified Planck's constant.

- Werner Heisenberg postulated the uncertainty principle in 1927.
- In classical mechanics, position and momentum are deterministic. In quantum mechanics, they are not deterministic and are associated with uncertainties.
- If position is measured with low uncertainty, then measurement of momentum has high uncertainty and vice versa.

Uncertainty \rightarrow Probability

- The uncertainty principle relates any pair of conjugate variables.
- Position momentum is a pair of conjugate variables.
- Energy time is also a conjugate variable pair.
- ullet So the uncertainty in energy ΔE is related to the uncertainty in time by Δt by

$$\Delta E \, \Delta t \geq \frac{\hbar}{2}$$

This is the second statement/corollary of Heisenberg's uncertainty principle.

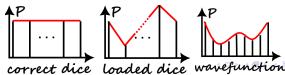
- Due to the smallness of reduced Planck's constant, the uncertainty principle is significant for subatomic particles.
- The cause of uncertainty is limitation of measurement.

Key Insight

Since the position cannot be measured with certainty, we determine the **probability** of finding an electron at a particular position.

Probability: Mapping of Dice \rightarrow position

- The way to deal with uncertainty is to talk in terms of probability.
- If a system has N events, the probability of event A is defined as number of times event A has occured over total number of outcomes.
- A coin is a "2-sided polyhedron/dice". The probability of coin having heads is $\frac{1}{2}$. Similarly for N-sided dice the probability is $\frac{1}{N}$.
- A "loaded" dice can different probability for each outcome.
- In the limit of ∞-sided dice, the probability of a outcome becomes a function.



Uncertainty in function of variable

• If uncertainty in variable x is Δx , then the uncertainty in variable f(x) is given by

$$\Delta f = \frac{\mathrm{d}f}{\mathrm{d}x} \Delta x$$

• Kinetic energy *E* is related to momentum *p* by

$$E=\frac{p^2}{2m}$$

• If uncertainty in momentum is Δp , then uncertainty in kinetic energy E is given by

$$\Delta E = \frac{\mathrm{d}E}{\mathrm{d}p} \Delta p = \frac{p}{m} \Delta E$$

Problem

- Uncertainity in position of electron is 12 Å.
- Nominal energy of electron is 16 e V.
- Determine the uncertainty in momentum and kinetic energy

Unit 2 Plan

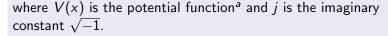
- Introduction to QM
- 2 Dual nature of radiation
- de Broglie's concept of matter waves
- 4 Heisenberg's uncertainty principle
- 5 Schrödinger's time dependent wave equation

Schrödinger's wave equation

Wave equation hypothesis

If the wave function of a particle of mass m is $\Psi(x, t)$, then it satisfies the wave equation given by

$$-\frac{\hbar^2}{2m} \cdot \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t) = j\hbar \frac{\partial \Psi(x,t)}{\partial t}$$



- ^aPotential energy and not electric potential difference
- Erwin Schrödinger postulated the wave equation in 1926 that incorporated principles of quanta introduced by Planck and wave-particle duality introduced by de Broglie.
- ullet The wave function $\Psi(x,t)$ describes the behaviour of particle
- $\Psi(x,t)$ can be a **complex** quantity.

Analysis of the wave equation (W.E.)

$$-\frac{\hbar^2}{2m} \cdot \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t) = j\hbar \frac{\partial \Psi(x,t)}{\partial t}$$

1 The independent variables/quantities are position x and time t whereas the dependent variable is the wave function Ψ . Therefore, wave function is a function of position and time

$$\Psi(x,t)$$

- W.E. is a partial differential equation.
 - A differential equation relates dependent variable y to the independent variable x. The relationship is given by derivatives $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots$
 - A partial differential equation relates dependent variable z to the independent variables x and y. The relationship is given by partial derivatives $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x^2}$, ...
- **3** W.E. is a **second order** differential equation.
 - A first order differential equation has only first order derivative.
 - A second order differential equation has upto second order derivatives.
- ullet The potential energy V(x) is a parameter whereas \hbar, m_{ij} are constants.

Solution of the W.E.: Separation of variables

$$-\frac{\hbar^2}{2m} \cdot \frac{\partial^2 \Psi(x,t)}{\partial x^2} + \frac{V(x) \Psi(x,t)}{\partial t} = j\hbar \frac{\partial \Psi(x,t)}{\partial t}$$

- The goal is to find the solution $\Psi(x,t)$ for a given V(x).
- We assume form of the solution as

$$\Psi(x,t) = \frac{\psi(x)}{\phi(t)} \phi(t)$$

where $\psi(x)$ is a function of the position only and $\phi(t)$ is a function of the time only.

Upon substitution of above form, W.E. reduces to

$$-\frac{\hbar^2}{2m} \phi(t) \frac{\mathrm{d}^2 \psi(x)}{\mathrm{d}x^2} + V(x) \psi(x) \phi(t) = j\hbar \psi(x) \frac{\mathrm{d} \phi(t)}{\mathrm{d}t}$$

Solution of the W.E.: Separation of variables

W.E.
$$-\frac{\hbar^2}{2m}\phi(t)\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + \frac{V(x)\psi(x)\phi(t)}{\psi(x)} = j\hbar\psi(x)\frac{\mathrm{d}\phi(t)}{\mathrm{d}t}$$
W.F.
$$\psi(x,t) = \psi(x)\phi(t)$$

Divide the above equation by total wave function so that

$$-\frac{\hbar^2}{2m}\frac{1}{\psi(x)}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2}+V(x)=j\hbar\frac{1}{\phi(t)}\frac{\mathrm{d}\phi(t)}{\mathrm{d}t}$$

• Since L.H.S. is a function of x only and R.H.S. is a function of t only, each side must be equal to constant. Let us call this the separation constant η .

$$-\frac{\hbar^2}{2m}\frac{1}{\psi(x)}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + V(x) = \eta, \qquad j\hbar\frac{1}{\phi(t)}\frac{\mathrm{d}\phi(t)}{\mathrm{d}t} = \eta$$

Solution: Time dependent part of W.F

$$j\hbar \frac{1}{\phi(t)} \frac{\mathrm{d} \phi(t)}{\mathrm{d} t} = \eta$$

• The time dependent side of W.E. is then given by

$$\frac{\mathrm{d} \phi(t)}{\mathrm{d} t} = -j \frac{\eta}{\hbar} \phi(t) \qquad \text{related to} \qquad \frac{\mathrm{d} y}{\mathrm{d} x} = cx$$

The solution is a sinusoidal wave given by

$$\phi(t) = e^{-j\left(\frac{\eta}{\hbar}\right)t}$$
 related to $y = e^{-j\omega t}$

with angular frequency ω given by

$$\omega = \frac{\eta}{\hbar}, \quad \Rightarrow \eta = \hbar\omega = \frac{h}{2\pi} \cdot 2\pi\nu = h\nu$$

• From Planck's law, $E = h\nu$. Therefore,

$$\eta=E, \qquad ext{and} \qquad \qquad \phi(t)=e^{-j\left(rac{E}{\hbar}\right)t}=e^{-j\omega t}$$

 $\left[\nu = \frac{\omega}{2\pi}\right]$

Solution: Time independent part of W.F.

$$-\frac{\hbar^2}{2m}\frac{1}{\psi(x)}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2}+V(x)=\eta$$

The time independent portion can now be written as

$$-\frac{\hbar^2}{2m}\frac{1}{\psi(x)}\frac{\mathrm{d}^2\frac{\psi(x)}{\mathrm{d}x^2}}+V(x)=E$$

where the separation constant is replaced by the total energy E.

Therefore, the time independent part of W.E. is

$$\frac{\mathrm{d}^2 \psi(x)}{\mathrm{d}x^2} + \frac{2m}{\hbar^2} (E - V(x)) = 0$$

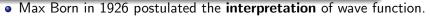
• This is called the time independent Schrödinger wave equation. The aim is to solve for the time independent wave function $\psi(x)$ for a given potential V(x).

Physical meaning of wave function

Probability density hypothesis

If the wave function of a particle is $\Psi(x,t)$, then the probability density function is given by

$$|\Psi(x,t)|^2$$



 Let us assume that we have solved for the time independent part of wave function. Thus,

$$\Psi(x,t) = \psi(x)e^{-j\omega t}$$

• Since $\Psi(x,t)$ is a complex function, it cannot represent physical quantity. Its modulus squared is the **probability density** of finding particle between x and $x+\mathrm{d}x$ and is given by

$$|\Psi(x,t)|^2 = \Psi(x,t) \cdot \Psi^*(x,t) = \psi(x)e^{-j\omega t} \cdot \psi^*(x)e^{+j\omega t} = |\psi(x)|^2$$

• The probability of finding particle between x and x + dx is then

$$|\psi(x)|^2 \cdot \mathrm{d}x$$

Boundary conditions

Total probability is unity.

$$\int_{-\infty}^{\infty} |\psi(x)|^2 \, \mathrm{d}x = 1$$

This condition is called **normality condition**.

- Continuity condition
 - \bullet $\psi(x)$ must be finite, single-valued and continuous.
 - 2 $\frac{\partial \psi(x)}{\partial x}$ must be finite, single-valued and continuous.
- $\psi(x)$ must vanish at infinity.

$$\lim_{x \to \infty} \psi(x) = 0, \qquad \lim_{x \to -\infty} \psi(x) = 0$$

This condition is due to the **physicality condition**.

Problem

Normalization of wave function

• Consider the wave function $\Psi(x,t) = A\cos\left(\frac{\pi x}{2}\right)e^{-j\omega t}$ for $-1 \le x \le +3$. Determine A so that $\int_{-1}^{+3} |\Psi(x,t)|^2 dx = 1$.

Summary

Postulates of quantum mechanics

The work of Planck, de Broglie, Heisenberg, Born, and Schrödinger can be summarized as

- **1** The state of a particle is given by the wave function $\Psi(x,t)$.
- ② The probability density of the particle is $|\Psi(x,t)|^2$. The probability of finding the particle in between x and x + dx is $|\Psi(x,t)|^2 dx$.
- **3** If the uncertainty in position is Δx and uncertainty in position is Δp , then $\Delta x \Delta p \geq \frac{\hbar}{2}$.
- The de Broglie wavelength of particle with momentum p is $\lambda = \frac{h}{p}$.
- **1** The energy E of the particle with frequency ν is $E = h\nu$.

