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Unit 2 Plan

@ Introduction to QM

© Dual nature of radiation

© de Broglie's concept of matter waves
@ Heisenberg’s uncertainty principle

© Schrodinger's time dependent wave equation
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Unit 2 Plan

© de Broglie's concept of matter waves
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Quantum mechanics jigsaw puzzle
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Theories of quantum physics

@ Max Planck’s postulate of quantization of light energy absorbed or
emitted by electron in quanta (plural for quantum)

@ Louis de Broglie's postulate of existence of matter waves
@ Werner Heisenberg’s principle of uncertainty

@ Erwin Schrodinger’s wave equation
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Wave-Particle Duality

de Brogie hypothesis

Any moving particle is associated with a wave. The waves
associated with particles are called de Broglie waves or
matter waves.

@ Louis de Broglie in 1924 postulated the existence of
matter waves.

@ He suggested since light wave exhibits particle like
behaviour, matter particles should be expected to show
wave-like properties. This is the hypothesis of
wave-particle duality.

@ The wavelength A of the matter wave is related to the
momentum p of the matter particle by

A=
p
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Matter wave: properties

o Matter waves are due to motion of particle and are independent of
charge. Therefore, they are neither electromagnetic waves nor
acoustic waves. They are a new kind of waves.

e Can propagate/travel through vacuum and do not require any
medium for propagation.

@ Smaller the mass, longer the de Broglie wavelength.

@ Smaller the velocity, longer the de Broglie wavelength.

@ Velocity of matter waves depends on velocity of particle and is not a
constant quantity.

Estimate: de Broglie wavelength of thermal electron

Estimate at room temperature.

Estimate: de Broglie A\ of macroscopic particle | ‘*}
Cricket ball of mass 150 g is bowled at 140 kmh~1. & i




Unit 2 Plan

@ Heisenberg’s uncertainty principle
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Heisenberg uncertainty principle

Uncertainty principle/hypothesis

Precise values of position and momentum of a particle cannot
be determined simultaneously. If the uncertainty in position is
Ax and uncertainty in momentum is Ap, then

h h
AxAp > > where h = o

where 7 is the reduced/modified Planck’s constant. )

@ Werner Heisenberg postulated the uncertainty principle in 1927,

@ In classical mechanics, position and momentum are deterministic. In
quantum mechanics, they are not deterministic and are associated
with uncertainties.

@ If position is measured with low uncertainty, then measurement of
momentum has high uncertainty and vice versa.
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Uncertainty — Probability

The uncertainty principle relates any pair of conjugate variables.
Position — momentum is a pair of conjugate variables.
Energy — time is also a conjugate variable pair.
So the uncertainty in energy AE is related to the uncertainty in time
by At by

AE At > g
This is the second statement/corollary of Heisenberg's uncertainty
principle.
Due to the smallness of reduced Planck’s constant, the uncertainty
principle is significant for subatomic particles.
The cause of uncertainty is limitation of measurement.

Since the position cannot be measured with certainty, we determine the
probability of finding an electron at a particular position.

- = = — >yt
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Probability: Mapping of Dice — position

@ The way to deal with uncertainty is to talk in terms of
probability.

o If a system has N events, the probability of event A is
defined as number of times event A has occured over
total number of outcomes.

@ A coin is a “2-sided polyhedron/dice”. The probability

of coin having heads is % Similarly for N-sided dice %
the probability is 7. (YNELAYe
208 @

@ A "“loaded” dice can different probability for each
outcome.

@ In the limit of co-sided dice, the probability of a
outcome becomes a function.
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Uncertainty in function of variable

@ If uncertainty in variable x is Ax, then the uncertainty in variable
f(x) is given by

df
Af = —Ax
dx
o Kinetic energy E is related to momentum p by
2
£_ P
2m
o If uncertainty in momentum is Ap, then uncertainty in kinetic energy

E is given by

Problem

o Uncertainity in position of electron is 12 A.
@ Nominal energy of electron is 16eV.

o Determine the uncertainty in momentum and kinetic energy
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Unit 2 Plan

© Schrodinger's time dependent wave equation
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Schrodinger’s wave equation

Wave equation hypothesis

If the wave function of a particle of mass m is W(x, t), then it
satisfies the wave equation given by
h2 9%W(x, t)

“om T; a4 V(X)\U(X, t) = jh

oV (x, t)

where V/(x) is the potential function? and j is the imaginary

constant v/—1.

?Potential energy and not electric potential difference

V.

@ Erwin Schrédinger postulated the wave equation in 1926 that
incorporated principles of quanta introduced by Planck and
wave-particle duality introduced by de Broglie.

@ The wave function W(x, t) describes the behaviour of particle

@ V(x,t) can be a complex quantity.
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Analysis of the wave equation (W.E.)

R?  0?W(x,t) . OV(x,t)
*% . T + V(X)\U(X, t) —th

@ The independent variables/quantities are position x and time t whereas the
dependent variable is the wave function W. Therefore, wave function is a
function of position and time

V(x,t)
@ W.E. is a partial differential equation.

o A differential equation relates dependent variable y to the independent
. . . . . . dy d%y
varlabl_e X. _The re_Iatlonshl_p is given by derivatives dxr dx2r
o A partial differential equation relates dependent variable z to the
independent variables x and y. The relationship is given by partial

ativee 02 0z 0%z
derivatives 5%, by Oxe

© W.E. is a second order differential equation.
o A first order differential equation has only first order derivative.
e A second order differential equation has upto second order derivatives.

@ The potential energy V/(x) is a parameter whereas /i, m; j are constants.
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Solution of the W.E. : Separation of variables

e _
o o+ V-

@ The goal is to find the solution - for a given -

@ We assume form of the solution as

W(x, t) = ¥(x) [@(8)]

where 1)(x) is a function of the position only and ¢(t) is a function of
the time only.

@ Upon substitution of above form, W.E. reduces to

2 d2 d
— ;i(z + VB9 o (x) [9E) = i v(x) E
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Solution of the W.E. : Separation of variables

h2 d2 ¢ (x)

WE - 80— + V) () B = jn () -
WF. W(x,t) = w(x)-

@ Divide the above equation by total wave function so that

o1 dPe(x) 1 dee)
2moy(x) X +-:Jhi dt

@ Since L.H.S. is a function of x only and R.H.S. is a function of t only,
each side must be equal to constant. Let us call this the separation
constant 7).

o1 v
e oz N =

2m 4(x)
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Solution: Time dependent part of W.F

o)) _

dt

L1
SN 7

@ The time dependent side of W.E. is then given by

d- = —j%- related to dy = cx

dt dx
@ The solution is a sinusoidal wave given by

—_iln —
-:e i(7)e related to y =e ¥t

with angular frequency w given by [v = %]
h
w:%, :>n:ﬁ¢u:%-27w=hl/

@ From Planck’s law, E = hv. Therefore,

n= E7 and - = e_j(%)t — e—jwt
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Solution: Time independent part of W.F

@ The time independent portion can now be written as

o1 d?Px)

EE IR

where the separation constant is replaced by the total energy E.
@ Therefore, the time independent part of W.E. is

d? ¥(x) 2m
—o e (E- V) =0
@ This is called the time independent Schrodinger wave equation. The
aim is to solve for the time independent wave function (x) for a

given potential -
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Physical meaning of wave function

Probability density hypothesis

If the wave function of a particle is W(x, t), then the
probability density function is given by

W (x. 1)
@ Max Born in 1926 postulated the interpretation of wave function.
@ Let us assume that we have solved for the time independent part of
wave function. Thus,

W(x, t) = (x)e "

@ Since V(x, t) is a complex function, it cannot represent physical
quantity. Its modulus squared is the probability density of finding
particle between x and x + dx and is given by

(W(x, t)> = W(x, t)- W*(x,t) = p(x)e ¥ p* (x)e™t = [(x)|?
@ The probability of finding particle between x and x + dx is then
lp(x)|? - dx 20 /22



Boundary conditions

@ Total probability is unity.

| wapax=1

This condition is called normality condition.
o Continuity condition
@ (x) must be finite, single-valued and continuous.
Q &g—i’() must be finite, single-valued and continuous.
@ )(x) must vanish at infinity.
lim ¢(x) =0, lim (x)=0
X—>00

X——00

This condition is due to the physicality condition.

Problem

Normalization of wave function
Q Consider the wave function W(x, t) = Acos (%*)e“* for
—1 < x < +3. Determine A so that fff’ |W(x, t)[2dx = 1.
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Postulates of quantum mechanics

The work of Planck, de Broglie, Heisenberg, Born, and
Schrédinger can be summarized as

© The state of a particle is given by the wave function W(x, t).

@ The probability density of the particle is |W(x, t)[?. The
probability of finding the particle in between x and x + dx is
|W(x, t)|?dx.

© If the uncertainty in position is Ax and uncertainty in
position is Ap, then Ax Ap > 4.

@ The de Broglie wavelength of particle with momentum p is
A=1L
P

© The energy E of the particle with frequency v is E = hv.
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