Engineering Physics (2025) Course code 25PY101 Unit 2: Quantum theories of solids

Course Instructor:

Dr. Sreekar Guddeti

Assistant Professor in Physics Department of Science and Humanities

Vignan's Foundation for Science, Technology and Research

November 23, 2025

Unit 2 Plan

- Quantum Free Electron Theory
- Permi-Dirac distribution
- 3 Electronic specific heat of solids
- 4 Density of states (qualitative)
- 5 Success and Failures of quantum free electron theory of solids
- 6 E-k diagram
- Classification of materials based on bands in solids
- 8 Fermi level in semiconductors- intrinsic and extrinsic

Unit 2 Plan

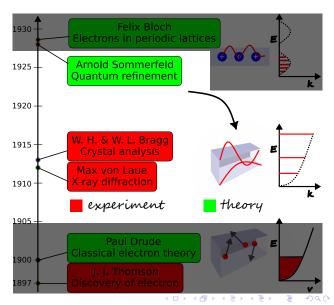
- Quantum Free Electron Theory
- Permi-Dirac distribution
- 3 Electronic specific heat of solids
- 4 Density of states (qualitative)
- 5 Success and Failures of quantum free electron theory of solids
- 6 E-k diagram
- 7 Classification of materials based on bands in solids
- 8 Fermi level in semiconductors- intrinsic and extrinsic

Summary of Classical free electron theory (CFET)

- Derived $\sigma = \frac{ne^2\tau}{m}$.
- Connected microscopic electron properties to macroscopic Ohm's law.
- Classical free electron theory has qualitative and quantitative agreement with experiment values of conductivity.
- However, the theory has drawbacks. Some of them are
 - Incorrect prediction for conductivity vs valency.
 - Cannot explain anomalous sign of Hall coefficient in some metals.
 - Underestimation of mean free path.
 - Cannot explain classification of materials into conductors. semi-conductors and insulators.
 - Wrong prediction of conductivity vs temperature.
 - Overestimation of heat capacity.

Electron theories of metals

- Classical free electron theory
- Quantum free electron theory
- Quantum band theory



Quantum free electron theory

A. Sommerfeld, W. Pauli, E. Fermi, and P. Dirac

- Proposed by Arnold Sommerfeld in 1927.
- Considered the matter wave nature of electron.
- Mutual repulsion between electrons is neglected i.e. electrons are independent – independent electron approximation.
- Assumed "gas" is free i.e. not under influence of lattice free electron approximation.
- Electrons obey the **Pauli exclusion principle**.
- Role of lattice is to redistribute the energy distribution that obeys quantum Fermi-Dirac statistics – quantum thermodynamics.
- The electron gas is called Fermi gas.

Free electron as a matter wave

Problem

Determine the wave number k, wavelength λ , angular frequency ω and period T of a wave function that describes a thermal electron at room temperature. If it is traveling along $+ve \times direction$, write the expression for the wave function.

Problem

The sketches below represent the spatial and temporal parts of wave function of a thermal electron moving along x direction. Determine the temperature.

Key Insight

A matter wave is described by wave vector k and angular frequency ω .

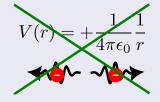
Problem at hand

$$V(r) = +\frac{1}{4\pi\epsilon_0} \frac{1}{r} \qquad V(r) \propto -\frac{1}{r}$$

- The problem at hand is to solve the motion of interacting matter waves— electrons of the order of 10^{23} and ions of the order of 10^{23} .
- This is a tough problem. The idea is to simplify the problem by making approximations.

Independent electron approximation

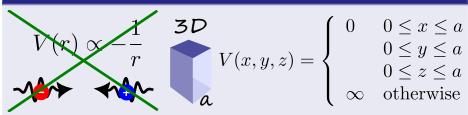
Postulate



• Mutual repulsion between electrons is neglected i.e. electrons are independent.

Free electron approximation

Postulate



- The interaction of electron with ions is neglected i.e. electrons are free.
- The electron is bounded within the metal by 3D infinite potential well.

Pauli's exclusion principle

Postulate

- No two electrons can occupy the same quantum state.
- No two electrons can share the same set of quantum numbers.
- Electron obeys Pauli's exclusion principle since it has spin $\frac{1}{2}$.

W. Pauli

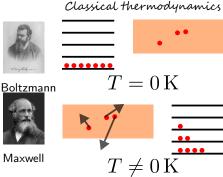
Definition

A quantum state is defined by a set of quantum numbers.

Problem

What quantum state is occupied by valence electron in Na?

Classical thermodynamics vs Quantum thermodynamics



- Classical thermodynamics allows electrons to share the same state.
- State is defined by velocity v.
- The occupancy of energy level is governed by Maxwell-Boltzmann statistics.

 $T = 0 \,\mathrm{K}$

 $T \neq 0 \,\mathrm{K}$

P. Dirac

- Quantum thermodynamics is governed by Pauli exclusion principle and forbids sharing the same state.
- Quantum state is defined by wavevector k
- The occupancy of energy level is governed by Fermi-Dirac statistics, 2/55

Sommerfeld's Quantum Free electron theory – Postulates

Postulates

- **1** Waves: Electrons are quantum waves with wavevector k, angular frequency ω .
- **2 Fermion:** Electron is a spin $\frac{1}{2}$ particle and obeys Pauli's exclusion principle.
- Independent electron approximation: Electrons are independent and mutual repulsion between them is ignored.
- Free electron approximation: Electrons are free and move in an infinite potential well.
- **Quantum Thermodynamics:** The thermalization is governed by Fermi-Dirac statistics.

Quantum states in a cubic box

Consider a particle of mass m confined in a cubic box of side a with infinite walls.

• Wavefunction boundary conditions lead to quantum numbers $n_1, n_2, n_3 \in \{1, 2, 3, ...\}$.

$$\psi_{n_1,n_2,n_3}(x,y,z) = \sqrt{\frac{8}{a^3}} \sin\left(\frac{n_1\pi x}{a}\right) \sin\left(\frac{n_2\pi y}{a}\right) \sin\left(\frac{n_3\pi z}{a}\right),$$

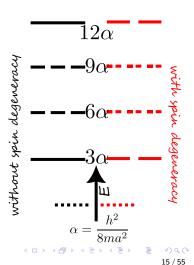
Energy levels are given by

$$E_{n_1,n_2,n_3} = \frac{h^2}{8ma^2} (n_1^2 + n_2^2 + n_3^2).$$

Quantum state vs Energy level – Degeneracy

In the 3D box, a quantum state is defined by set of three quantum numbers n_1 , n_2 , n_3 .

$\overline{n_1}$	n ₂	n ₃	E_{n_1,n_2,n_3}	degeneracy	
				without	with
				spin	spin
1	1	1	$3 \cdot \frac{h^2}{8ma^2}$	1	2
2	1	1	$6 \cdot \frac{h^2}{8ma^2}$	3	6
1	2	1	$6 \cdot \frac{h^2}{8ma^2}$	3	6
1	1	2	$6 \cdot \frac{h^2}{8ma^2}$	3	6
2	2	1	() "	3	6
1	2	2	$9 \cdot \frac{8ma^2}{8ma^2}$ $9 \cdot \frac{h^2}{8ma^2}$	3	6
2	1	2	$9 \cdot \frac{8ma^2}{8ma^2}$ $9 \cdot \frac{h^2}{8ma^2}$	3	6
2	2	2	$\frac{9 \cdot \frac{8ma^2}{8ma^2}}{12 \cdot \frac{h^2}{8ma^2}}$	1	2
:	:	:	:	:	:



Quantum degeneracy

Definition

- Degeneracy is the condition when an energy level has more than one quantum state.
- If *n* quantum states have same energy level, then degeneracy of the energy level is *n*.
- Degeneracy is also called multiplicity.

Problem

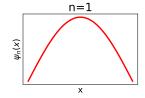
Five free electrons exist in a three dimensional potential well with all three widths equal to $a=12\,\text{\AA}$.

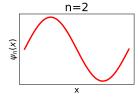
- Determine the Fermi energy level at $T = 0 \, \text{K}$.
- 2 Repeat part 1 for 13 electrons.

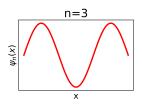
Key Insight

Quantum states can have the same energy level.

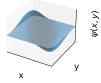
Nature of Wavefunctions – 1D, 2D





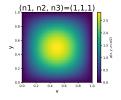


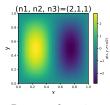
1D wave functions

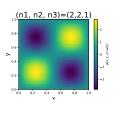


2D wave functions

Nature of Wavefunctions – 3D Macroscopic atom







3D wave functions

• The above plots are called colormap plots. Each plot is a slice of the wavefunction at $z = \frac{a}{2}$.

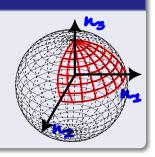
Key Insight

These wavefunctions are similar to s, p, d orbitals of hydrogen atom from chemistry.

Quantum number space

Quantum number space

- A quantum state corresponds to a point with positive integer coordinates (n₁, n₂, n₃) in the number space.
- This is an imaginary space.
- Quantum state lies in the positive octant of number space.



- Let us count the number of states up to energy E.
- Define $n \equiv \sqrt{n_1^2 + n_2^2 + n_3^2}$ (radial coordinate in *n*-space).
- The number of states with n less than some value n_0 equals the number of integer lattice points in the positive octant inside a sphere of radius n_0 .
- We count the volume in *n*-space:

$$N(n \le n_0) = g \times \frac{1}{9} \times \frac{4}{3} \pi n_0^3 = g \frac{\pi}{6} n_0^3 = \frac{1}{9} \frac{\pi}{6} n_0^3 = \frac{1}{19/55}$$

Relate *n* to energy

Using $E = (h^2/8ma^2)n^2$, solve for n:

$$n(E) = \frac{\sqrt{8ma^2E}}{h}.$$

Thus the total number of states with energy less than or equal to E is

$$N(E) \approx g \frac{\pi}{6} n(E)^3 = g \frac{\pi}{6} \left(\frac{\sqrt{8mL^2E}}{h} \right)^3 = g \frac{\pi}{6} \left(\frac{\sqrt{8mE}}{h} \right)^3 L^3.$$

Here, the volume $V = L^3$ and g=2.

Density of states $Z(E) = \frac{d(\frac{N}{V})}{dF}$

Definition

- Density of states Z(E) ^a is defined as the rate of change of the number of states per unit volume upto energy E with respect to energy E.
- Therefore, the the number of states per unit volume from energy E to E + dE is given by

$$Z(E) dE$$
.

 a In Neamen, density of states is denoted by g(E).

Number of states per unit volume is

$$\rho_N(E) = \frac{N}{V} = \frac{\pi}{3} \left(\frac{\sqrt{8m}}{h} \right)^3 E^{3/2}$$

DOS in textbook form

Differentiate $\rho_N(E)$ with respect to E to get the density of states function:

$$Z(E) = \frac{\mathrm{d}\rho_N(E)}{\mathrm{d}E} = \frac{\pi}{2} \cdot \left(\frac{\sqrt{8m}}{h}\right)^3 E^{1/2}$$

$$Z(E) = \frac{\pi}{2} \cdot 8 \cdot \left(\frac{2m}{h^2}\right)^{3/2} E^{1/2}$$

$$\therefore Z(E) = 4\pi \cdot \left(\frac{2m}{h^2}\right)^{3/2} E^{1/2}.$$

Key Insight

Y

For 3D infinite potential, $Z(E) \propto \sqrt{E}$.

Problem

Find the form of Z(E) for 2D infinite potential.

Fermi level

Definition

Fermi level of a metal is the maximum energy that an electron can have at ${\cal T}=0\,{\rm K}.$

At absolute zero all states are filled up to the Fermi energy E_F . The total electron density n_c (electrons per unit volume) is

$$n_{c} = \frac{N}{V} = \int_{0}^{E_{F}} Z(E) dE = 4\pi \cdot \left(\frac{2m}{h^{2}}\right)^{3/2} \int_{0}^{E_{F}} E^{1/2} dE$$

$$= 4\pi \cdot \left(\frac{2m}{h^{2}}\right)^{3/2} \cdot \frac{2}{3} E_{F}^{3/2}$$

$$= \frac{8\pi}{3} \left(\frac{2m}{h^{2}}\right)^{3/2} E_{F}^{3/2}.$$

Relating Fermi energy to electron density

Invert the relation to get the Fermi energy as a function of density:

$$E_F^{3/2} = \left(\frac{h^2}{2m}\right)^{3/2} \cdot \frac{3n_c}{8\pi}.$$

$$\therefore E_F = \frac{h^2}{2m} \left(\frac{3n_c}{8\pi} \right)^{2/3}.$$

This is the Fermi energy of a free electron gas in three dimensions at T=0.

Problem

Calculate E_F for metal with electron density $n_c = 5.8 \times 10^{28} \, \text{m}^{-3}$.