Engineering Physics (2025) Course code 25PY101 Module 2 Unit 1: Quantum theories of solids

Course Instructor:

Dr. Sreekar Guddeti

Assistant Professor in Physics
Department of Science and Humanities

Vignan's Foundation for Science, Technology and Research

November 26, 2025

Unit 2 Plan

- Quantum Free Electron Theory
- Permi-Dirac distribution
- 3 Electronic specific heat of solids
- 4 Density of states (qualitative)
- 5 Success and Failures of quantum free electron theory of solids
- 6 E-k diagram
- Classification of materials based on bands in solids
- 8 Fermi level in semiconductors- intrinsic and extrinsic

Unit 2 Plan

- Quantum Free Electron Theory
- Permi-Dirac distribution
- 3 Electronic specific heat of solids
- 4 Density of states (qualitative)
- 5 Success and Failures of quantum free electron theory of solids
- 6 E-k diagram
- Classification of materials based on bands in solids
- 8 Fermi level in semiconductors- intrinsic and extrinsic

Quantum thermodynamics: Fermi-Dirac (FD) Statistics

- Describes occupancy of energy states by electrons that obey Pauli exclusion principle.
- The probability of occupation of an energy level E at temperature T and Fermi energy level E_F is given by

$$P_{FD}(E) = rac{1}{\exp\left(rac{E-E_F}{k_BT}
ight)+1}.$$

Here k_B is the Boltzmann constant equal to $1.38 \times 10^{-23} \, \mathrm{J \, K^{-1}}.$

- To understand the FD statistics, let us analyze the probability function in two cases –
 - 0 $T \rightarrow 0$ limit
 - $T \neq 0$

Key Insight

¥

The Fermi-Dirac function is a result of Pauli exclusion principle.

Fermi–Dirac Statistics at the $T \rightarrow 0$ limit

• Take limit $T \rightarrow 0$ in definition:

$$P_{FD}(E) = \lim_{T \to 0} \frac{1}{\exp\left(\frac{E - E_F}{k_B T}\right) + 1} = \frac{1}{\exp\left(\frac{E - E_F}{0}\right) + 1}.$$

- This limit needs to analyzed for three cases
 - \bullet $E < E_F$

Fermi-Dirac Statistics at the $T \rightarrow 0$ limit

1.
$$E < E_F$$

2.
$$E > E_F$$

3.
$$E = E_F$$

$$P_{FD}(E) = \frac{1}{\exp\left(\frac{-\text{ve}}{0}\right) + 1} \quad P_{FD}(E) = \frac{1}{\exp\left(\frac{+\text{ve}}{0}\right) + 1} \quad P_{FD}(E) = \frac{1}{\exp\left(\frac{0}{0}\right) + 1}$$

$$= \frac{1}{\exp\left(-\infty\right) + 1} \quad = \frac{1}{\exp\left(\infty\right) + 1} \quad \text{Since } \frac{0}{0} \text{ is indeterminate}$$

$$= \frac{1}{0+1} \quad = \frac{1}{\infty + 1} \quad \text{form, } P_{FD}(E) \text{ is not defined at}$$

$$= \frac{1}{1} \quad = \frac{1}{\infty} \quad T = 0 \text{ K}, E = E_F.$$

$$= 1 \quad = 0$$

$$e^{\frac{1}{2}} = \frac{1}{\exp\left(\frac{+ve}{0}\right) + 1}$$

$$= \frac{1}{\exp\left(\infty\right) + 1}$$

$$= \frac{1}{\infty + 1}$$

$$= \frac{1}{\infty}$$

$$= 0$$

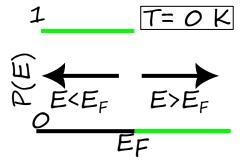
• Since
$$\frac{0}{0}$$
 is indeterminate form, $P_{FD}(E)$ is not defined at $T=0$ K, $E=E_F$.

Fermi–Dirac Statistics at the $T \rightarrow 0$ limit

ullet Hence, at $T=0\,\mathrm{K}$ the distribution becomes a step function

$$P_{FD}(E) = \begin{cases} 1, & E < E_F \\ 0, & E > E_F \end{cases}$$

where E_F is the Fermi energy.



Key Insight

At T = 0 K, the Fermi-Dirac distribution is a step function.

Fermi–Dirac Statistics at $T \neq 0$

• At $T \neq 0$, consider $k_B T$ is a small positive quantity +ve.

$$P_{FD}(E) = \frac{1}{\exp\left(\frac{E - E_F}{+ \text{ve}}\right) + 1}.$$

- This limit needs to analyzed for three cases -1
 - **1** $E \ll E_F$ so that $E E_F$ is a big negative number i.e. --ve
 - ② $E \gg E_F$ so that $E E_F$ is a big positive number i.e. ++ve
 - $\mathbf{6}$ $E = E_{\mathsf{F}}$

 $^{^{1}\}gg$ is symbol for very greater than and \ll is symbol for very lesser than \gg

Fermi–Dirac Statistics at $T \neq 0$

1.
$$E \ll E_F$$
 a

2.
$$E \gg E_F$$

3.
$$E = E_F$$

$$(E) = \frac{1}{1000}$$

 $\therefore P_{FD}(E) \simeq 1$

 $a \simeq is symbol for nearly$

eanal

 $\therefore P_{FD}(E) \simeq 0$

◆□▶◆圖▶◆臺▶◆臺▶ 臺

9 / 67

$$P_{FD}(E) = \frac{1}{\exp\left(\frac{--\mathrm{ve}}{+\mathrm{ve}}\right) + 1} P_{FD}(E) = \frac{1}{\exp\left(\frac{++\mathrm{ve}}{+\mathrm{ve}}\right) + 1} P_{FD}(E) = \frac{1}{\exp\left(\frac{0}{+\mathrm{ve}}\right) + 1}$$

Fermi–Dirac Statistics at $T \neq 0$

• Hence, at $T \neq 0 \, \mathrm{K}$ the distribution becomes a "smeared" 2 step function

$$P_{FD}(E) = \begin{cases} \simeq 1 & E \ll E_F \\ \simeq 0 & E \gg E_F \end{cases}$$

$$O.5^E \ll E_F$$

$$E = E_F$$

Key Insight

¥

At $T=0\,\mathrm{K}$, the Fermi-Dirac distribution is a "smeared" step function.

Problems on Fermi Dirac statistics

Problem

Calculate the probability that an energy level $3k_BT$ above the Fermi energy is occupied by an electron

Problem

Calculate the probability that an energy level $3k_BT$ below the Fermi level is empty

Problem

Fermi energy of a metal is 6.25 eV. Calculate the temperature at which there is a 1% probability that a state 0.30 eV below the Fermi energy level will not contain an electron.

Problem

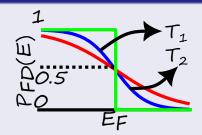
Calculate the temperature at which the probability that an energy level 0.3 eV below the Fermi level is occupied is 0.7.

Problems on Fermi Dirac statistics

Problem

Calculate the temperature at which the probability that an energy level $3k_BT$ above the Fermi level is occupied is 0.7. [Hint: This is a wrong question]

Problem



Statement: $T_1 > T_2$.

Is the statement true or false?

Boltzmann approximation to Fermi Dirac distribution

• In the limit of $E - E_F \gg k_B T$,

$$P_{FD}(E) \simeq \exp\left[-rac{E-E_F}{k_BT}
ight]$$

This is called the Boltzmann approximation

Problem

Calculate the energy at which the difference between Boltzmann approximation and the Fermi-Dirac function is 5 % of the Fermi function.