Engineering Physics (2025) Course code 25PY101 Module 2 Unit 2: Optoelectronics

Course Instructor:

Dr. Sreekar Guddeti

Assistant Professor in Physics
Department of Science and Humanities

Vignan's Foundation for Science, Technology and Research

December 17, 2025

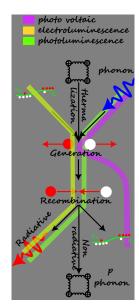
M2U2 Plan

- p-n junction diode forward and reverse conditions
- Solar cell
- 3 Photo-diode
- 4 Direct and indirect band gap semiconductors
- 5 Light Emitting Diode
- Tunneling diode

M2U2 Plan

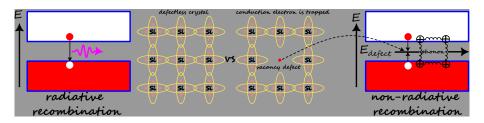
- 1 p-n junction diode forward and reverse conditions
- Solar cell
- 3 Photo-diode
- 4 Direct and indirect band gap semiconductors
- 5 Light Emitting Diode
- Tunneling diode

Luminescence


Definition

Luminescence refers to the general property of light emission.

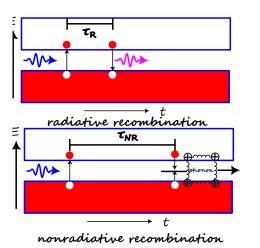
- The previous two opto-electronic devices solar cell and photo diode


 were based on generation of excess carriers. The source of energy
 for generation was photon.
- The counterpart of generation is recombination.
- Recombination is of two types -
 - radiative recombination the charge carriers recombine to emit photon
 - non radiative recombination the charge carriers recombine to emit phonon i.e. heat.
- Here there are two types of radiative recombination
 - Photo luminescence If the excess charge carriers were generated by photon absorption, the photo emission from the recombination is called photo luminescence
 - **Electro-luminescence** If the excess charge carriers were generated by current caused by an applied electric field, the photo emission from the recombination is called electro-luminescence.

Transfer of energy

- From the perspective of transfer of energy, the various processes can be understood as
 - Photo voltaic effect Light \rightarrow Electrical
 - Photoluminescence Light \rightarrow Light
 - Electroluminescence Electrical → Light
- Processes that end up as light energy are due to radiative recombination.
- However, some other processes are also possible, where the energy ends up as heat
 - $\bullet \ \mathsf{Photodiode} \mathsf{Light} \to \mathsf{Electrical} \to \mathsf{Thermal}$
 - ullet pn junction at forward bias Electrical ightarrow Thermal
 - pn junction at reverse bias Thermal \rightarrow Electrical \rightarrow Thermal
- Processes that end up as thermal energy are due to non-radiative recombination.
- The third opto-electronic device LED is_{5/36}

Radiative vs Non radiative recombination


- Defects are imperfections in semiconductor. These are different from impurities.
- Some examples of defects are absence of atom in lattice vacancy defect or presence of extra atom interstitial defect
- Defects arise when temperature is increased. These lead to defect levels **within** the forbidden band gap.
- If the crystal is without defects, radiative recombination is preferred and final particle emitted is a **photon**.
- If the crystal is with defects, electron and hole reach the defect level first, then they recombine non radiatively and final particle emitted is a **phonon** or lattice vibration.

 6/36

Recombination lifetime

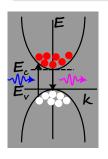
Definition

Recombination lifetime is the time period between generation and recombination of charge carriers.

- Consider an electron-hole pair is generated.
- When an electron is in conduction band, its energy has increased. It wants to recombine with a hole to reduce energy.
- The time taken to recombine radiatively τ_r is less than the time taken to recombine non-radiatively τ_{nr} since the defect level lowered the energy of electron.

Recombination rate – Classification of semiconductors

Definition


Recombination rate is defined as the rate at which the excess charge carriers are recombining

- The recombination rate is inversely related to the recombination lifetime.
- In the absence of defects, radiative recombination rate R_r is higher than non-radiative recombination rate R_{nr} .
- R_r 2.15
- However, as the defect density n_{defect} increases, the radiative recombination rate is not affected, but the non-radiative recombination rate increases.
 The bandstructure of the semiconductor also affects the
- The bandstructure of the semiconductor also affects the recombination rates. Based on bandstructure the semiconductors classified as –
 - Direct band gap
 - Indirect band gap

Direct band gap semiconductor

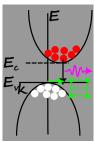
Definition

A direct band gap semiconductor is defined as a semiconductor with the top of valence band and bottom of conduction band at the **same** value of wave vector.

- Consider electron moves from E_c to E_v .
- In the radiative recombination process,
 - Energy of electron is transferred to energy of photon.
 - Initial momentum of electron is equal to final momentum.
 - Therefore, both the energy and momentum of the (electron + hole + photon) system is conserved.
 - three particles are involved

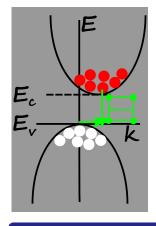
$$e^- + h^+ \rightarrow photon$$

Key Insight


Radiative type of recombination is the dominant mechanism in a direct bandgap semiconductor.

Indirect band gap semiconductor

Definition


An indirect band gap semiconductor is defined as a semiconductor with the top of valence band and bottom of conduction band at the **different** values of wave vector.

- Consider electron moves from E_c to E_v .
- In the radiative recombination process,
 - Energy of electron is transferred to energy of photon.
 - Initial momentum of electron is not equal to final momentum.
 - Therefore, energy of the (electron + hole + photon) system is conserved but the momentum is not conserved.
- To conserve momentum, a phonon assisted radiative recombination occurs where difference in momentum is supplied by phonon and four particles are involved

$$e^- + h^+ \rightarrow photon + phonon$$

Indirect band gap semiconductor

- Since the four particle process is difficult to occur, the phonon-assisted radiative recombination is not dominant mechanism.
- Instead the photon emission is avoided and the energy and momentum conservation is satisfied by emission of phonon only.

$$\mathrm{e}^- + \mathrm{h}^+ \to \mathsf{phonon}$$

• Emission of phonon leads to rise in temperature of material.

Key Insight

Non-radiative type of recombination is the dominant mechanism in an indirect bandgap semiconductor.

Direct vs indirect bandgap semiconductor

SNo.	Property	Direct	Indirect
1	k at E_C vs k at E_v	equal	unequal
2	Recombination mechanism	Radiative	Non-radiative
3	Particle emitted	Photon	Phonon
4	Periodic table	Compound s.c. like GaAs, InP	Elemental s.c. like Si, Ge
5	Applications	LED, laser diode	transistors, diodes