

ENGINEERING PHYSICS

(CSE(AI&ML)/CSE(CS)/CSE(DS))

Time: 150 Min**Max. Marks: 60M****SECTION – A****Answer all Four questions****4×8M=32M**

1. a) Explain the significance of Heisenberg's uncertainty principle with one suitable example. [4M]
b) Describe how Heisenberg's uncertainty principle helps to understand the non-existence of electrons inside the nucleus of an atom. [3M]
c) An electron is confined in a box of length 10^{-9} m. Calculate the minimum uncertainty in its momentum. [1M]

2. a) Explain how the Schrödinger equation helps to understand the quantization of energy levels in a one-dimensional potential well. [4M]
b) Apply the normalization condition to obtain the wave functions for a particle in one-dimensional potential well and plot them. [3M]
c) An electron possesses a wavelength of 2Å in the ground state; calculate the length of the potential. [1M]

3. a) Explain what is photovoltaic effect. [1M]
b) Elucidate the role of depletion region in P-N junction diode in conversion of light power into electrical power in the photovoltaic cell. [4M]
c) Draw the I-V characteristics of a solar cell and write the expressions for Fill factor and efficiency. [3M]

4. a) Describe how the direct bandgap materials have superior performance than the indirect bandgap materials in LEDs and LASERs. [2M]
b) What are the essential conditions for an ordinary light to be called a LASER? [2M]
c) Briefly explain the lasing action in semiconductor LASER with the help of a suitable band diagram. [4M]

SECTION - B**Answer all Two questions****2×14M=28M**

5. a) How does the principles of Quantum free electron theory are applied to elucidate the electronic-specific heat of metals to overcome the failures of the classical free electron theory. [7M]
b) What is the Fermi-Dirac distribution function? Explain its temperature variation at T=0K and T>0K. [4M]
c) The Fermi level of silver is 5.5eV. Calculate the probability of finding the electron at the energy of 0.3eV above the Fermi level at 1000K. [3M]

6. a) Apply the law of mass-action to obtain an expression for the electrical conductivity of an intrinsic semiconductor from the electron and hole carrier concentrations. [5M]
- b) Why the carrier concentration of Ge is more than Si at all temperatures? [1M]
- c) Mobilities of electrons and holes in a sample of intrinsic Ge at 300K are $0.36\text{m}^2/\text{Vs}$ and $0.17\text{m}^2/\text{Vs}$ respectively. If the resistivity of the specimen is $2.12\Omega\text{m}$, compute the forbidden energy gap for Ge, $m_e^*=0.5m_0$ and $m_h^*=0.37m_0$. [4M]
- d) The conductivity of Ge at 20°C is $2(\Omega\text{m})^{-1}$. Calculate its conductivity at a temperature of 40°C . Given bandgap of Ge=0.7eV. [4M]