	Regd.										
VFSTR - VADLAMUDI	No.										
	Year	Semester				Branch			Section		
Staff Name: Dr. P. Srinivasa Rao	I		1			Non-Bio			26 to 46		
Faculty Dept : Physics	Course: EP			Code: 25PY101				Set-3			
Program Name: B. Tech.	Date: 31.10.25			Time: 9.00 to 10.30 AM					T1		

Time: 90 Minutes Max. Marks: 30

Part-A

Answer all questions

- 1. Apply your knowledge of Lorentz force and electric field force to build an equation for the Hall voltage (V_H) produced in an extrinsic semiconductor. (5M)
- 2. An electron is confined to move in a one dimensional potential well of length 5 Å. Determine the quantized energy values of the first three lowest energy states. Mass of electron $m=9.11 \times 10^{-31} \text{ kg}$. (5M)

Part-B

Answer all questions

- 3. a) Describe the physical significance of the wavefunction ψ and it's probabilistic interpretation. (4M)
- b) The wavefunction in a one-dimensional potential well is given by $\psi = A \sin(\frac{n\pi x}{L})$, using the normalization condition estimate the value of A. (6M)
- 4. a) Starting from applying the Newton's law F=ma, to the free electrons in a metal, obtain the relationship between the current density and conductivity of a metal. (5M)
- b) A uniform silver wire has $5.8*10^{28}$ conduction electrons/m³ with a resistivity of $1.54*10^{-8}$ (Ω m)⁻¹. For an electric field of 1 V/cm, calculate the relaxation time, drift velocity and mobility. (5M)